Influenza Viruses – A Review

AVIAN INFLUENZA: INTERSECTORAL COLLABORATION
Larnaca, Cyprus
20 – 22 July 2009
Influenza Viruses

C. Goldsmith, 1981
Influenza Viruses

- Family *Orthomyxoviridae*, three influenza genera
 - Type A
 - Type B
 - Type C

C. Goldsmith and A. Balish, 2009
Influenza B

- Not classified into subtypes
- Mostly causes disease in humans
- It is a common influenza virus
 - Included in human seasonal influenza vaccine
- In general
 - Less severe than A
 - Epidemics occur less often than A

C. Goldsmith, 2005
Influenza C

- Not classified into subtypes
- Identified in humans and swine
- Different pattern of surface proteins
- Rare infections, with mild to no symptoms

C. Goldsmith, 2005
Influenza A Viruses

C. Goldsmith, 1981
Influenza A

- Negative single-stranded RNA virus
- 8 gene segments code for 11 proteins
- Most virulent
- Widest host range

This file has been released into the public domain by the copyright holder, http://en.wikipedia.org/wiki/Influenza_virus
Influenza A

HA – receptor binding and fusion to host cell to support infection

NA – supports release of new virus from infected cell

http://en.wikipedia.org/wiki/Influenza_virus
Influenza A

Matrix
M1 – assists in viral assembly
M2 – provides low pH during viral synthesis

http://en.wikipedia.org/wiki/Influenza_virus
Influenza A

PB1, PB2, PA – polymerase complex for transcription

http://en.wikipedia.org/wiki/Influenza_virus
Influenza A

NP – nucleoprotein, supports viral synthesis

http://en.wikipedia.org/wiki/Influenza_virus
Influenza A

NS1, NS2 – Nonstructural protein, multifunction, downplays host immune response, assists in viral assembly

http://en.wikipedia.org/wiki/Influenza_virus
Influenza A

- Influenza A viruses
 - Categorized by subtype of HA and NA
 - Hemagglutinin (HA)
 - H1 – H16
 - Antibody to HA is protective
 - Neuraminidase (NA)
 - N1 – N19
 - Antibody to NA can help modify disease severity

Hemagglutinin
This image is in the public domain in the United States
Influenza A Virus Nomenclature

Virus type: A /Duck/ Sydney / 05 / 97 (H3N2)

Type of Animal (Optional): Duck

Place virus isolated: Sydney

Year isolated: 05 / 97

Virus subtype: H3N2
Laboratory Testing for Influenza A Humans

• Rapid diagnostic tests
 • Can provide results <30 minutes
 • ~ 70+% sensitive, 90+% specific

• Serology
 • Must used paired serum samples
 • >2 week delay for results

• Viral culture
 • Gold standard
 • Results take 7 days
 • Influenza isolates for yearly vaccine development

• RT-PCR
 • Most sensitive
 • Becoming more widely available

• Immunofluorescence
 • Requires intact cells and laboratory skill/experience
Laboratory Testing for Influenza A Animals

 - Chapter 2.3.4. Avian influenza
 - Chapter 2.5.7. Equine influenza
 - Chapter 2.8.8. Swine influenza

- OIE/FAO Network of Expertise on Animal Influenza (www.offlu.net)
Influenza A Epidemiology

Tumpey and Goldsmith, 2009
Influenza A Viruses

- Polymerase complex lacks proofreading capability → 1 in 5 virus particles likely to contain a mutation.
- If mutation provides virus with a competitive advantage, that strain quickly replaces its predecessor.
- In humans, the need to escape preexisting immunity exerts positive selection pressure on changes in amino acids comprising the antigenic sites of HA and NA.
- This antigenic drift results in the emergence of an antigenically distinct variant strain in humans every 2–3 years.
Influenza A Viruses

• Mutate frequently – escaping immunity
 • Antigenic drift
 • Point mutations accumulated during virus replication
 • Antigenic shift
 • Hybrid virus emerges when a cell is infected with two different influenza viruses
 – Human, avian, swine, equine
 • Transfer of influenza virus to a different species
Zoonotic Pathways of Influenza A Viruses

History of Animal (and Zoonotic) Influenza A Viruses

- 1930 - Swine Influenza Virus isolated (A/swine/Iowa/30)
- 1933 – Human Influenza Virus isolated
- 1902/1955 Avian (chicken) influenza virus isolated (A/chicken/Brescia/1902 [H7N7])
Influenza of Wild Birds

- Influenza virus replicates in respiratory and particularly gastrointestinal tracts
- Large amount of virus can be shed in feces
- Efficient viral transmission through fecal-oral route through contaminated water
- Certain species (waterfowl) believed to be natural reservoir
- All the HA and NA subtypes have been identified among wild birds – historically as asymptomatic infections
- Several species capable of distributing virus across countries / continents
- Influenza A, HPAI H5N1 is different
Influenza of Domestic Birds

- Domestic poultry (e.g., chicken, turkeys, ducks, etc.) and caged pet birds
 - Viruses can be divided into two groups based on their clinical manifestation in chickens
 - Highly pathogenic (within the H5 and H7 subtypes, to date) → severe systemic illness, up to 100% mortality
 - Low pathogenic (can also include H5 and H7 subtypes) → milder, primarily respiratory disease; may mutate into HP virus
 - Both likely introduced into domestic poultry from wild birds
Influenza of Domestic Birds

• Spread within and among flocks by various methods
 • Migratory birds
 • Mechanical transfer of infective feces
 • Contaminated water
 • Illegal trade
Influenza A of Swine

• Respiratory illness described in pigs in 1918 – believed to be the first occurrence of influenza in swine
• “Classical” swine influenza
 • Swine influenza virus first isolated as H1N1
 • Swine influenza endemic in many pig populations
 • Pigs can be infected with different influenza viruses - “reassortant strains”
Receptor Binding

• Influenza viruses bind to neuraminic acids (sialic acids) on the surface of cells to initiate infection and replication.

• HAs of viruses that replicate in different species show specificity toward sialic acids with different linkages:
 • Human viruses preferentially bind to receptor by an $\alpha 2,6$ linkage (SA$\alpha 2,6$Gal) - human tracheal epithelial cells contain mostly SA$\alpha 2,6$Gal.
 • Avian viruses mostly bind to sialic acid with an $\alpha 2,3$ linkage - gut epithelium from ducks possesses mostly SA$\alpha 2,3$Gal.
 • $\alpha 2,3$ linkages are present in the human airway epithelium cells that can be infected with avian influenza viruses.
 • Ability to infect is not solely based on these receptor types.

• Viruses passed through a particular host, they can adapt to that host by mutating the HA receptor-binding site.
Receptor Binding – and the Potential Role of Pigs as Mixing Vessels

• Swine have both SAα2,3Gal and SAα2,6Gal
• They can be infected not only with swine influenza viruses, but also avian and human
• Cells with receptors types found in different regions of the respiratory tract
• Same cell infected with human, avian, and/or swine viruses can support reassortment
Reassortments among Influenza A Viruses Infecting Swine

Enzootic Strains among Swine, 2000

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Location</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1N1</td>
<td>North America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td>“Classical” swine influenza virus</td>
</tr>
<tr>
<td></td>
<td>Asia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>South America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td>“Avian-like” (1979)</td>
</tr>
<tr>
<td></td>
<td>Asia</td>
<td>“Avian-like” (1993)</td>
</tr>
<tr>
<td>H3N2</td>
<td>Asia</td>
<td>“Human-like” (1970 – Asia)</td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>South America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Africa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asia</td>
<td></td>
</tr>
<tr>
<td>H1N2</td>
<td>Asia</td>
<td>“Classical” swine + “human-like” (Japan)</td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td>Human + “human-like” (Britain)</td>
</tr>
</tbody>
</table>

Reassortments among Influenza A Viruses Infecting Swine

Influenza A of Equines

- Equine influenza is an acute respiratory infection of horses, donkeys and mules
- Two distinct subtypes H3N8, and to lesser degree H7N7
- Clinical signs include pyrexia and a harsh dry cough followed by a mucopurulent nasal discharge; neurological signs have been described as a rare event
- Characteristically, influenza spreads rapidly in a susceptible population
- Interspecies transmission to dogs
Influenza A of Humans

• **Seasonal**
 - Established, widely circulating subtypes
 - Historically have included only H1, H2, H3, N1, N2
 - Currently H1N1, H3N2, and H1N2

• **Pandemic**
 - Influenza virus to which a majority of the human population has no existing immunity
 - Many influenza viruses circulating in animal species would meet this criteria
 - Emerges in the human population and efficiently transmits from human to human.
Background Influenza A in Humans

• Pandemics
 • 1918 “Spanish flu” (avian-like H1N1) - secondary infections
 • 1957 “Asian flu” (H2N2) – underlying conditions
 • 1968 “Hong Kong flu” (H3N2) – smoldering epidemic
 • 2009 “Pandemic H1N1” - ongoing

• Pseudopandemics
 • 1947: (H1N1) extreme intrasubtypic antigenic variation
 • 1976: “Potential Pandemic”, Fort Dix, New Jersey (“swine-like” H1N1)
 • 1977: Russian Flu, a Juvenile, Age-restricted Pandemic (“human-like” H1N1)
Influenza A – Molecular Epidemiology

- Ability to compare genetics of influenza viruses
- Compares the 8 genes to known, representative strains
- Fundamentally requires widely (publicly) available libraries with deposited genetic sequences
 - Reverse genetics of the 1918-19 pandemic virus
 - Clades of HPAI H5N1
 - Untangling the web between H1N1 (human seasonal) vs H1N1 (classical swine) vs H1N1 (avian-like, in swine) vs reassortments
Phylogeny of HA and NA Subtypes

Reverse Genetics

Clades of H5N1

Pandemic H1N1 2009

Gene Segments, Hosts, and Years of Introduction

- PB2, PA (~1998)
- PB1 (~1968)
- HA, NP, NS (~1918)
- NA, M (~1979)

Triple Reassortant
Classical Swine
Eurasian Swine

2009 A(H1N1)
Pandemic H1N1 2009

Garten et al. Science (2009); 325:197-201
Pandemic H1N1 2009

Garten et al. Science (2009); 325:197-201

2009 A(H1N1)
Highest Identity by BLAST
Human Infection Swine Virus
Human Seasonal

American Avian
Eurasian Swine

Classical Swine

A/Duck/NorthCarolina/91347/2001 H1N2
A/Swine/NorthCarolina/98225/2001 H1N2
A/Wisconsin/10/1998 H1N1
A/Swine/Minnesota/00194/2003 H1N2
A/Wisconsin/87/2005 H1N1
A/Ohio/01/2007 H1N1
A/Swine/Ohio/511445/2007 H1N1
A/Swine/Kansas/00246/2004 H1N2
A/Swine/Korea/ASAN04/2006 H1N2
A/Swine/Indiana/P12439/2000 H1N2
A/Swine/Guangxi/13/2006 H1N2
 A/Mexico/4115/2009
 A/NewYork/20/2009
 A/California/07/2009
 A/California/04/2009
A/PuertoRico/8/1934 H1N1
A/NewCaledonia/20/1999 H1N1
A/SolomonIslands/03/2006 H1N1
A/Brisbane/59/2007 H1N1
A/Duck/NewYork/13152-13/1994 H1N1
A/Swine/Saskatchewan/18789/2002 H1N1
A/Mallard/Maryland/161/2002 H1N1
 A/Mallard/Minnesota/SG-00121/2007 H1N1
A/Swine/Belgium/1/1983 H1N1
A/Swine/England/WVL7/1992 H1N1
A/Swine/Spain/50047/2003 H1N1
A/Swine/Zhejiang/1/2007 H1N1
Influenza A – Prevention and Control

C. Goldsmith, 1981
Basic Tenets

• Prevention
 • Biosecurity
 • Vaccination

• Control Options (depending on the situation)
 • Movement controls
 • Vaccination
 • Culling
Summary

- Influenza A viruses occur worldwide, affect humans and many other animals, and are very contagious.
- Immunity is subtype/strain specific – HA and NA.
- Antigenic shift and antigenic drift support development of new strains to which limited immunity exists in a particular population.
- Both classical and molecular epidemiology have provided great insight into influenza.
- Zoonotic transmission of influenza will play an ongoing role in influenza epidemiology.
Thank you for your attention

k.glynn@oie.int